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1. INTRODUCTION

In 1895, Wilhelm Konrad Röntgen’s discovery of X-rays
laid the foundation for modern medical imaging [1]. Today,
Computed Tomography (CT) scans are crucial for visualiz-
ing anatomical structures, particularly in the thoracic region.
However, automatically segmenting different organs in these
scans remains challenging due to varying organ shapes and
similar tissue densities between structures.

In this paper, we address thoracic organ segmentation us-
ing the Segmentation of Thoracic Organs at Risk (SegTHOR)
dataset [2], which provides CT scans and ground truth seg-
mentations of four organs (esophagus, heart, trachea, and
aorta) from 60 patients. Using the Efficient Neural Network
(ENet) [3] as our baseline, we investigate four approaches to
improve performance: preprocessing, data augmentation, hy-
perparameter tuning, and post-processing. We also compare
ENet with recent architectures including Vision Mamba UNet
(VM-UNet) [4] and Segment Anything Model 2 (SAM2) [5].

Our experiments show that preprocessing and model opti-
mization significantly improve segmentation quality, achiev-
ing a 3D-Dice score of 0.8071 compared to the baseline’s
0.6826. We evaluate performance using multiple metrics: 2D
and 3D Dice Similarity Coefficient, 95th-percentile Hausdorff
Distance, and Average Symmetric Surface Distance.

The remainder of this paper is organized as follows: Sec-
tion 2 provides theoretical background, Section 3 describes
our methodology, Section 4 presents experimental results, and
Section 5 discusses our findings. We conclude with a sum-
mary and future directions.

2. THEORETICAL BACKGROUND

This section provides the theoretical foundation for our work
through two main components. First, we introduce the model
architectures employed in our experiments, detailing their key
characteristics and design principles. Second, we discuss the
the metrics used to evaluate segmentation quality, including
their strengths and limitations.

2.1. Model Architectures

In this subsection, we present the three model architectures
employed in our experiments: ENet, VM-UNet, and SAM2.

Each model is designed to address the challenges of thoracic
organ segmentation with varying degrees of complexity and
computational efficiency.

2.1.1. ENet

The Efficient Neural Network (ENet) [3], released in 2016, is
specifically designed for real-time semantic segmentation. Its
architecture follows an encoder-decoder structure with partic-
ular emphasis on efficiency. The encoder consists of an initial
stage and three bottleneck stages, that reduce the spatial di-
mensions and capture semantic features. The decoder part of
the architecture is designed with two bottleneck stages to re-
cover the original spatial resolution. The key features of the
network are:

• Early downsampling through an initial block that com-
bines max pooling and convolution

• An asymmetric encoder-decoder ratio (5:1) that priori-
tizes efficient feature extraction

• Modified residual blocks with PReLU activation func-
tions

• Dilated convolutions in later stages for an enlarged re-
ceptive field

• Factorized filters (1 × n followed by n × 1) reducing
computational complexity

2.1.2. VM-UNet

Vision Mamba UNet (VM-UNet) [4] combines traditional
convolutional approaches with state space models (SSMs).
While the traditional Convolutional Neural Networks (CNNs)
offer linear complexity, they struggle with long-range depen-
dencies [4, 6]. Vision Transformers (ViTs) can capture these
global dependencies better, however it comes at the cost of
quadratic complexity and increased memory usage.

VM-UNet addresses these limitations by integrating
UNet’s [7] convolutional architecture with Mamba’s [6] 2D-
selective-scan (SS2D) method. This hybrid approach main-
tains linear complexity while effectively capturing global
dependencies, resulting in competitive segmentation scores
while maintaining computational efficiency [4].
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Fig. 1: Visualisation of a ground truth segmentation on the
left and a segmentation prediction on the right. The amount
of overlap is defined as the (in this case 2D) Dice Coefficient.

2.1.3. SAM2

Segment Anything Model 2 (SAM2) [5] is Meta’s recent
foundation model for segmentation tasks. It builds upon
Hiera [8], a hierarchical vision transformer architecture that
processes images at multiple resolutions to efficiently capture
both local and global features. Trained on a diverse dataset
of 51,000 videos containing 600,000 masks, SAM2 demon-
strates strong zero-shot generalization capabilities across a
wide range of segmentation tasks allowing for video and
image input.

2.2. Evaluation Metrics

How do you measure performance in image segmentation?
There are many different metrics to measure performance in
image segmentation [9] and each of them captures different
aspects of the performance. Measuring accuracy is different
than measuring the error, for example. The orientation (2D or
3D) can also change the outcome of the segmentation metric.

Often, metrics are chosen inadequately, which impacts the
model’s ability to be applied in practice [10, 11]. To address
this mismatch, we employ four distinct metrics to validate
our segmentation model: 2D Dice Similarity Coefficient, 3D
Dice Similarity Coefficient, 95th-percentile Hausdorff Dis-
tance, and Average Symmetric Surface Distance. Each metric
provides unique insights into the model’s performance, with
the two Dice variants specifically helping us understand
performance differences between slice-wise and volumetric
evaluations.

2.2.1. Dice Similarity Coefficient

The Dice metric was originally drafted as a metric to compute
ecologic association between species [12]. It gives an insight
into how closely associated two surfaces (2D, Figure 1) or
volumes (3D) are by calculating their amount of overlap.

2.2.2. 95th-percentile Hausdorff Distance

Instead of looking at the amount of overlap between for ex-
ample a ground truth and prediction segmentation, the Haus-
dorff Distance (or min-max) rather looks at the error of your
prediction.

It is an inherently 3D metric, for each point on a predic-
tion surface calculates the closest distance to the ground truth
surface, and vice versa [13]. From all these ”errors” it then
takes the 95th-percentile distance, indicating that 95% of the
two-volume boundaries are closer together than that distance.

This metric is susceptible to outliers, and ignores holes in
surfaces and volumes [11]. Therefore this metric is often used
for the detection of spatial outliers.

2.2.3. Average Symmetric Surface Distance

The Average Symmetric Surface Distance (ASSD) is very
similar to the Hausdorff distance but instead of using the 95th-
percentile it uses the average off all surface distances.

ASSD(A,B) =

∑
a∈A d(a,B) +

∑
b∈B d(b, A)

|A|+ |B|
(1)

Equation 1 shows that the ASSD calculates the minimum
distances between the surfaces for all points on the surfaces
(d(a,B) and d(B, a)), and then averages it by dividing by
the total amount of points on the surfaces. This averaging
operation makes the ASSD more robust to outliers and gives
an idea of the average ”error” of your model.

3. METHODOLOGY

This section details our experimental approach to improving
medical image segmentation. All code and implementation
details are publicly available on GitHub, enabling full repro-
ducibility of our results.

Our experimental framework systematically evaluates
various optimization techniques for the ENet baseline ar-
chitecture through an ablation study. Each enhancement
technique can be independently enabled or disabled, allowing
us to isolate their individual impacts and identify optimal
combinations for thoracic organ segmentation.

3.1. Data Preprocessing

All our experiments are run using the SegTHOR dataset [2].
As mentioned before, this dataset consists of the full-body CT
scans and corresponding ground truth segmentations for 60
patients, both in NIfTI format. However, the quality of these
CT scans is not always perfect or consistent across patients.
Therefore, we apply multiple preprocessing steps to improve
the quality of data we feed into the network.

3.1.1. Heart Segmentation Correction

Notably, the dataset contains a systematic discrepancy, caus-
ing all ground truth heart segmentations to be placed in the
wrong position. The first step of the data preprocessing con-
sists of fixing these segmentations. We can do this using pa-
tient number 27, the only patient with both a correct and cor-
rupted ground truth. This allows us to calculate the corrupted
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Fig. 2: Visualisation of a preprocessed CT-scan slice Here we
applied voxel clipping, rescaling, and intensity normalization
in order to improve the image quality.

and correct ground truth segmentation centroids. Using these
centroids we can determine an affine transformation, to move
all the heart segmentations for the other patients to their cor-
rect position. This is a vital step in order to learn meaningful
segmentations during training.

3.1.2. Voxel Clipping

To reduce noise in CT scans, we use voxel clipping, which
limits extreme voxel intensities by clipping them to a pre-
defined threshold. In medical imaging, voxel intensities are
measured in Hounsfield Units (HU), with air (-1000HU) and
bone (1000HU) often representing the extremes. Therefore
voxel intensities outside this range usually indicate noise or
irrelevant details. By voxel clipping we focus the analysis on
the most meaningful structures in the CT-scan, to enhance the
model’s ability to learn relevant features.

3.1.3. Rescaling

To standardize the spatial dimensions of all scans, we rescale
the voxel size to 0.977mm × 0.977mm × 2.500mm. This en-
sures that images have consistent voxel spacing, regardless of
the original scan parameters. By making the voxel dimen-
sions uniform, we reduce variability and improve the compa-
rability of anatomical structures across different patients.

3.1.4. Intensity Normalization

The final preprocessing step that we perform is intensity nor-
malization. This is done to account for differences in voxel
intensity distributions across scans, which could arise from
variations in scanners or imaging protocols. We use z-score
normalization, calculated as z = x−µ

σ , where x is the original
voxel intensity, µ is the mean intensity, and σ is the standard
deviation over all intensities. This process enhances contrast
and brings all scans into a similar intensity range, improving
the model’s ability to generalize across different patients.

3.2. Models

We use ENet as our base model. Given the promising re-
sults in related work, we extend our evaluation to include
VM-UNet and SAM2. All models are used with their
default configurations, with minor modifications to VM-
UNet and SAM2 to accommodate the grayscale images from
the SegTHOR dataset. Our implementation is available on
GitHub.

3.3. Data Augmentation

To improve generalization and increase the dataset size, we
apply offline data augmentation by performing random affine
transformations on each image slice, effectively doubling the
dataset. These transformations are captured by the following
affine matrix:

T =

a11 a12 tx
a21 a22 ty
0 0 1


We apply random rotations (−10◦ < θ < 10◦), uni-

form scaling (0.9 < a11 = a22 < 1.1), and translations
(−10 < tx, ty < 10). These small adjustments simulate re-
alistic variations in CT scans, allowing the model to train on
more diverse data and reducing overfitting.

3.4. Hyperparameter Optimization

We performed hyperparameter optimization using Weights
and Biases (wandb) sweeps with Bayesian optimization, ef-
ficiently exploring the hyperparameter space based on prior
results. Our optimization focused on five key parameters: the
learning rate (ranging from 1e-4 to 1e-2), optimizer (Adam
vs. AdamW), learning rate scheduler (different modes with
varying factors and patience values), weight decay (0.0001 to
0.01), and kernel size (16 to 64).

AdamW performed better than Adam, with its decoupled
weight decay leading to improved generalization in our con-
text. The optimal hyperparameters found through Bayesian
optimization are shown below.

Hyperparameter Optimal Value

Learning Rate 1e-3
Optimizer AdamW
LR Scheduler mode=’min’, factor=0.5, patience=5
Weight Decay 0.0001
Kernel Size 32

Table 1: Optimal hyperparameters values found

3.5. Post-processing

To further improve the segmentation predictions, we apply a
three-step post-processing pipeline. First, we use binary clos-
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ing to fill small holes within the predicted masks. Next, bi-
nary opening is applied to remove noise and small spurious
regions. Finally, we retain only the largest connected compo-
nent to focus on the primary structure of interest. This pro-
cess ensures cleaner and more accurate segmentation results
by eliminating irrelevant and noisy parts of the prediction seg-
mentations. The ability to turn on or off all these settings in-
dividually allows us to train 13 different model variations of
the ENet model, and compare them with each other and the
VM-UNet and SAM2 models.

4. RESULTS

Our experiments evaluated model performance using 3D-
Dice Similarity Coefficient (Dice), 95th-percentile Hausdorff
Distance (HD95), and Average Symmetric Surface Distance
(ASSD). Table 2 summarizes the results across configura-
tions, while Figure 3 illustrates the performance distributions.

Preprocessing showed the most significant impact, im-
proving the Dice score from 0.6826 (baseline) to 0.7576,
while substantially reducing HD95 and ASSD metrics. The
boxplots in Figure 3 demonstrate that this improvement is
consistent across all organs, with notably reduced variance in
the metrics after preprocessing.

Data augmentation further enhanced performance, partic-
ularly when combined with hyperparameter tuning, achieving
our highest Dice score of 0.8071. The distribution plots show
this configuration also provided the most stable performance
across different organs. Interestingly, while post-processing
produced visually appealing results, it often decreased metric
scores, likely due to over-aggressive filtering of small struc-
tures.

The optimal configuration combined preprocessing, aug-
mentation, and tuning using the AdamW optimizer, achieving
the best scores across all three metrics. This is reflected in
both the numerical results and the tighter distributions shown
in the boxplots, particularly for HD95 and ASSD metrics. For
visual comparison between our baseline and best model pre-
dictions against ground truth, see Figure 4 in the Appendix.

5. DISCUSSION

Our experimental results reveal varying segmentation per-
formance across different organs, with the esophagus prov-
ing particularly challenging. This lower performance for
esophageal segmentation can be attributed to two main fac-
tors: first, its anatomical characteristics as a small, elongated
organ close to the aorta, and second, its inherent difficulty in
medical imaging, as noted by related work stating that “The
esophagus is one of the most difficult OARs to segment” [14].

We implemented data augmentation strategies to address
this challenge with esophagus segmentation, applying up to

Settings ENet (Adam) ENet (AdamW)

Dice HD95 ASSD Dice HD95 ASSD

Baseline 0.6826 12.2335 3.5179 - - -
Preprocessed 0.7576 6.6451 2.2200 - - -

PreP + Tuning 0.7861 6.1526 1.9648 0.7752 5.8931 1.9484
PreP + Augmentation 0.8023 6.7640 1.7883 - - -
PreP + PostProcess 0.7528 14.0171 3.0799 - - -

PreP + Aug + Tune 0.7987 5.9352 1.9050 0.8071 5.0892 1.6597
PreP + Tune + PostP 0.7788 12.8022 2.8587 0.7699 11.7992 2.7076
PreP + Aug + PostP 0.8027 8.2353 2.1105 - - -

PreP + Aug + Tune + PostP 0.7844 13.5581 2.8232 0.8025 9.6998 2.2646

Table 2: Results for ENet (Adam) and ENet (AdamW) across
different settings, with Dice, HD95, and ASSD as metrics.
The best model for each metric is reported in bold and the
second best for each metric is underlined.

three transformations per slice. We deliberately excluded mir-
roring transformations, as such configurations would be phys-
iologically impossible in thoracic scans. While additional
augmentations could have been generated through multiple
transformation rounds, we determined that a single round suf-
ficiently demonstrated the technique’s value while balancing
computational constraints.

Our experiments with state-of-the-art architectures re-
vealed several significant challenges. VM-UNet, despite its
theoretical advantages in capturing long-range dependencies
through state space models, performed unexpectedly poorly
on our segmentation task. This underperformance might be
attributed to the model’s sensitivity to hyperparameter set-
tings and the specific characteristics of medical imaging data,
which differ substantially from the natural images for which
these architectures were primarily designed.

The fundamental design of SAM2 presented two major
challenges for our task. First, its interactive segmentation
approach expects prompting points to indicate target objects,
which our dataset doesn’t provide and proved difficult to gen-
erate automatically for specific organs. Second, SAM2’s ar-
chitecture is optimized for RGB images, requiring substan-
tial modifications for grayscale medical imaging data. While
we successfully implemented these modifications, these ar-
chitectural challenges prevented us from completing our full
evaluation suite within the project timeframe and computation
budget.

5.1. Limitations

Reinke et al. (2024) [11] report that voxel-based metrics are
not appropriate for detection problems. E.g. when detecting
lesions after traumatic injury, voxel-based metrics miss the
lesion. We deployed 3D-metrics as well but deem this limita-
tion beyond the scope of our project. However, this limitation
should be considered when discussing our framework’s gen-
eralisability.
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Fig. 3: Boxplot comparisons of model performance across different settings for the Dice, HD95, and ASSD metrics. The
settings include variations in preprocessing, tuning, augmentation, and post-processing for both Adam and AdamW optimizers.
These visualizations illustrate the distribution of performance metrics for each configuration, helping to identify the optimal
combinations for thoracic organ segmentation.

5.2. Future work

A promising direction for future research lies in leverag-
ing the temporal coherence inherent in 3D medical scans.
While our current approach treats each slice independently,
medical volumes can be viewed as a sequence of frames,
similar to video data. This perspective enables several po-
tential advances in medical imaging segmentation: treating
consecutive CT slices as video frames to learn spatial conti-
nuity, propagating organ segmentations through volumes for
improved consistency, utilizing previous slice information
for automated prompting, and adapting SAM2’s temporal
tracking to follow organ boundaries continuously. These ap-
proaches could significantly reduce the current limitations of
slice-by-slice processing while improving overall segmenta-
tion consistency.

6. CONCLUSION

In this work, we investigated approaches to improve medical
image segmentation using the Segmentation of THoracic Or-
gans at Risk (SegTHOR) dataset, which comprises CT scans
of thoracic organs from 60 patients. Using the Efficient Neu-
ral Network (ENet) as our baseline architecture, we system-
atically evaluated multiple optimization strategies and com-
pared their performance against state-of-the-art models.

Our experimental results demonstrate that preprocessing
techniques showed the most significant impact on segmen-
tation performance, while data augmentation and hyperpa-
rameter tuning provided additional performance gains. The
combination of all optimization strategies achieved our best
performance, with a 3D-Dice score of 0.8071 (0.9031 in 2D-

Dice). Notably, despite their theoretical advantages, newer
architectures (SAM2 and VM-UNet) did not outperform our
optimized ENet baseline.

These results suggest that careful optimization of estab-
lished architectures can match or exceed the performance of
more complex, state-of-the-art models for specialized med-
ical imaging tasks. Furthermore, our findings highlight the
importance of preprocessing in medical image segmentation,
indicating that data quality and standardization may be as cru-
cial as model architecture choice, while future work could
explore leveraging temporal coherence in 3D scans to further
improve performance.

6.1. Report Requirements

The work was divided among the authors as follows: Lisa
van Ommen focused on data preprocessing and augmenta-
tion strategies, Pepijn de Reus implemented VM-UNet and
led paper writing, Didier Merk developed the core experi-
mental framework and metrics, while Raoul Ritter handled
hyperparameter optimization and SAM2 implementation.
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Appendix

Fig. 4: Visualization of segmented thoracic organs for Patient
22, comparing the best model (right) with the baseline model
(middle) and the ground truth (left). The segmented organs
are the esophagus, trachea, aorta, and heart.
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