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Abstract

This paper improves an existing approach to ground the
generations of a text-to-image diffusion model which simul-
taneously generates an image and a segmentation mask for
the target objects described in the text prompt. Our contri-
butions are the following: (i) we created a flexible pipeline
that allows grounding several diffusion models in a plug-
and-play fashion, (ii) we investigated the impact of prompt
engineering on the grounding abilities of the model, (iii) we
improved the training procedure of the grounding model by
using a log-cosh loss, inducing regularization using dropout
and training for multiple epochs, as well as decoupling the
dataset generation from training. Finally, we evaluate the
performance of open-vocabulary object grounding against
a previous approach and show that we improve the mIoU
score by 4% while using a quarter of the data.

1. Introduction
Semantic segmentation is a fundamental computer vi-

sion task whose goal is classifying whether an image
pixel belongs to a semantic category or the “background”.
Many approaches have successfully tackled this with super-
vised methods [25, 31]. While classification datasets (e.g.,
ImageNet-1k [7]) cover thousands of classes, semantic seg-
mentation datasets are more restricted, covering tens [8,23]
to hundreds of semantic classes [41, 42]. This limitation
is due to the cost of producing such datasets, as human
annotators have to provide pixel-level annotations for se-
mantic entities [20]. To tackle this problem, several zero-
shot [3, 13, 20], and few-shot [2, 33] methods have been
proposed, but they still rely on annotated datasets for train-
ing or on a pre-trained model. Parallel to these develop-
ments, text-to-image generative models have received in-

creasing attention. These models can generate photore-
alistic images with robust vision-language correspondence
given a text prompt [30]. Previous work [22] has shown
that it is possible to generate images and ground semantic
entities simultaneously [22], paving the way toward a con-
trolled generation of semantic segmentation datasets. This
is beneficial in low-data scenarios or tasks with the goal of
segmenting long-tail objects, as significantly larger datasets
are needed to find sufficient training examples for rare cat-
egories [12, 14]. Even though the grounding model can
accurately ground an object in an image, its performance
quickly deteriorates when multiple objects are present. This
paper tackles this limitation by making the following con-
tributions: (i) We make the grounding pipeline flexible by
adapting the HuggingFace diffusers [38] library for visual
grounding, allowing an easy comparison of several diffu-
sion models. This paper focuses on Stable Diffusion version
1.5, its fine-tuned checkpoint, and version 2. (ii) We in-
vestigate the impact of prompt engineering for training the
grounding model and propose a straightforward and more
effective prompt: “x and y” for a two-class image. (iii)
We improve the training process by using the log-cosh loss,
dropout, and decoupling the dataset generation from train-
ing, which allows training the grounding model for multiple
epochs. Our grounding model can segment multiple objects
in a single image even when long-tail labels are used, such
as “sushi platter” and “eurofighter” as shown in Figure 1.
We follow the first evaluation protocol proposed by [22] to
quantitatively assess our model. We show that our contribu-
tions not only achieve similar results in grounding objects of
seen classes but also improve the open-vocabulary ground-
ing abilities of the model while using a quarter of the data.
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(a) a photograph of an alpaca standing
next to a park bench

(b) a wooden barrel next to a cactus
outside of a saloon in late 1800s austin
texas

(c) a portrait of an explorer dressed in
the style of indiana jones

(d) a long shot photograph of a man
standing in front of of a ferrari tes-
tarossa

(e) a long shot photograph of an ele-
phant standing in front of an eu-
rofighter jet

(f) a flamingo standing next to a yacht (g) a long shot photograph of lion
chasing a zebra in the african savan-
nah

(h) a photograph of a sushi platter next
to an asahi beer can on top of a table

(i) a long shot photograph of batman
jumping over a taxi

(j) a photograph of a lynxes flying a
kite

(k) a long shot photograph of a chef
looking at an avocado shaped oven

(l) a photograph of super mario stand-
ing in front of a shipping container

Figure 1. Qualitative results. The original image and the segmentation masks generated by our grounding model for one or two classes.
The model is able to ground long tail objects such as a sushi platter, eurofighter, batman and super mario

2. Related Work

2.1. Image Generation

Image generation is challenging due to the high dimen-
sionality and variance of image data. Several methods have
been proposed for this task, such as Generative Adversar-
ial Networks (GAN) [10], Variational Autoencoders (VAE)
[19] and autoregressive models [4,37]. Out of these, GANs
have the highest fidelity, but they have a non-trivial training
process and may suffer from catastrophic forgetting, result-
ing in mode collapse and non-convergence [36]. Recently,
diffusion models have become popular due to their ability
to synthesize high-quality and diverse images [11, 15, 34].
These models can be conditioned on text, enabling text-
guided image generation. Examples are DALL-E 2 [29] and
Stable Diffusion [30], which exploit the vision-language
correspondence learned by CLIP [27], and Imagen [32],
which can synthesize high-quality image despite using T5
[28], a language model trained exclusively on text.

2.2. Visual Grounding

Visual grounding can be defined as the task of under-
standing a natural language query and finding the target ob-
ject(s) in an image [22]. Previous works operate either in
a two-stage or single-stage approach. Two-stage methods,

such as the object detector ViLD [12], propose a set of im-
age regions to be queried and classify those with an open-
vocabulary classification model. OpenSeg [9] approaches
semantic segmentation by first predicting mask propos-
als, refined in a second stage via region-word alignment.
Single-stage approaches have been shown to achieve better
performances. One such method is LSeg [20], where the au-
thors train an image encoder to output pixel-aligned CLIP
embeddings using a labeled segmentation dataset. Other
single-stage methods, such as CRIS [40] and CLIPSeg [26],
train a decoder to output pixel-aligned relevancy maps given
a CLIP language embedding and intermediate outputs of its
visual encoder. The latter also supports multimodal queries,
as the query can be either text or an image. Our method,
heavily based on [22], is more similar to these approaches,
but instead of image features from CLIP, we use feature
maps from the Stable Diffusion U-Net. Also, we do not re-
quire any labeled data for training. More recent approaches,
such as LERF [17], tackle grounding in a 3D space by learn-
ing a language field inside a neural radiance field.

3. Methodology
First, we start with a brief overview of diffusion models

and Image Quality Assessment in Sections 3.1 and 3.2. In
Section 3.3, we provide a detailed description of the proce-



dure used to generate our dataset, followed by the ground-
ing model architecture in Section 3.4. Next, we discuss the
prompt engineering process in Section 3.5 and finally we
delve into the training process in Section 3.6.

3.1. Diffusion Models

Diffusion Models are probabilistic generative models
that learn a data distribution by iteratively denoising a Gaus-
sian sample. They can be decomposed into two processes:
the forward process, which iteratively adds noise to a real
data sample, and the backward process, which, through a
time-conditioned neural network, learns to progressively
denoise a sample. In this paper, we employ Stable Dif-
fusion version 1.5 [30], a text-to-image diffusion model,
which conditions the reverse process on a textual input of-
ten referred to as “prompt.” Stable Diffusion has three main
components: a pre-trained variational autoencoder (VAE),
used to encode images in its latent space; a text encoder,
CLIP [27], which encodes variable-length prompts into a
fixed size text embedding and a time conditional U-Net
[31], which predicts the noise to be removed at each time
step from the sampled latent vector. The U-Net also en-
forces the visual-language interaction using cross-attention
layers. During inference, we sample a vector zT ∼ N (0, I)
and apply T denoising steps using the U-Net. The resulting
vector z0 is then mapped back to the image space using the
VAE.

3.2. Image Quality Assessment

The quality of images generated by Stable Diffusion may
vary (see Figure 12, 13), thus the original paper [22] hand-
picks testing samples to provide a more realistic evaluation
of the grounding model. We automate this procedure by
picking the top 80% of the testing set using a no-reference
metric, CLIP-IQA+ [39]. This metric can quantitatively as-
sess the quality of a generated sample without needing a
reference image. This is done by calculating the cosine
similarity of the image embedding from CLIP with the text
embeddings of antonym prompts (e.g., “good photo” and
“bad photo”) and computing a softmax over the two scores.
While simple, this strategy effectively assesses the image
quality and its abstract perception or “feel.”

3.3. Dataset Construction

Following the approach of [22], we build a dataset for
training the segmentation model. Each sample can be ex-
pressed as a tuple of (image, U-Net feature maps, segmen-
tation masks, object classes). The original paper generates
the dataset during training, whereas we decouple the dataset
generation from it, separating them into two different proce-
dures. This makes experimenting with the learning process
computationally cheaper as we no longer need to generate
the data on every run. The dataset was generated using Sta-

ble Diffusion version 1.5 [30] as implemented in the Hug-
gingFace diffusers [38] library. Images are generated using
the prompt “a photograph of a x and a y”, where x and y are
two randomly selected classes from the PASCAL VOC [8]
dataset. The dataset consists of 20 classes, split into 15 seen
classes (to generate the training set) and 5 unseen classes,
using the Split-1 of [22] as shown in Table 1. We obtain the
ground truth segmentation mask for each generated exam-
ple using the pre-trained off-the-shelf segmentation model
Mask R-CNN [24]. This choice motivated us to use classes
from PASCAL VOC since they are a subset of COCO [23],
the dataset used to train Mask R-CNN. The generated sam-
ples for which Mask R-CNN cannot find as many masks as
the classes specified in the prompt are discarded.

Split Classes

Seen aeroplane, bicycle, bird, boat, bottle, bus, cat,
chair, cow, diningtable, sheep horse, motor-
bike, person, pottedplant

Unseen tvmonitor, car, dog, sofa, train

Table 1. Split-1 for Pascal VOC. The seen classes are used to train
the grounding model, and the unseen ones to evaluate its open-
vocabulary grounding abilities

For testing, we generate three subsets: one using only
seen categories, one whose images contain both a seen and
an unseen object and one whose objects are both from un-
seen categories following [22]. The last setup directly eval-
uates the open-vocabulary object grounding abilities of our
model.

3.4. Grounding Model Architecture

We use the grounding model architecture proposed in
[22], which consists of a diffusion model, a visual encoder,
a text encoder, and a fusion model, as shown in Figure 2.
Before training, We pre-compute the features maps gener-
ated by the U-Net, significantly reducing training time. The
visual encoder takes the U-Net features as input and pro-
duces visual tokens for the image. The text embeddings for
target classes x and y are computed from the prompt “x and
y” using the CLIP [27] text encoder, which is also used in
Stable Diffusion. The text encoder is kept frozen during
training. Finally, the fusion model takes the visual tokens
and the text embeddings from the visual and text encoders
and outputs a mask embedding for each object in the image.
The fusion model consists of a transformer decoder, with
the text embedding as the Query and the visual tokens as
the Key and Value, followed by a Multi-Layer Perceptron
(MLP) consisting of 3 layers. Finally, the mask embeddings
are combined with the visual tokens through a dot product
operator to generate class-specific segmentation masks.



Figure 2. Grounding model architecture: The visual and text en-
coder respectively encode the visual tokens from stable diffusion
using features from its U-Net and the text embeddings from the
prompt using CLIP. The visual tokens and the text embeddings
are given as input to the fusion module, composed by a trans-
former decoder followed by an MLP that outputs mask embed-
dings. These are finally combined via a dot product with visual
tokens to obtain class-specific masks. During training, both the
diffusion model and the text encoder are kept frozen.

3.5. Prompt Engineering

The original architecture [22] uses the CLIP [27] em-
beddings of the <|endoftext|> token of the prompt “a
photograph of x” as the language input for the segmenta-
tion model. We trained the segmentation model with sev-
eral prompts for one epoch without dropout and, as seen
in Table 3, we found that for images with two objects, the
prompt “x and y” works best, granting a 5% improvement
on the unseen test set. In addition, we implemented an al-
gorithm that selects all the embeddings corresponding to an
object’s class given its class name and averages them. This
is necessary because CLIP’s tokenizer uses byte-level Byte-
Pair-Encoding, and thus a word may map to multiple to-
kens. The process is illustrated in Figure 3, using the “pot-
tedplant” class from Pascal VOC as an example.

3.6. Training

We train the grounding model in a supervised fashion us-
ing the generated dataset. For optimization, we use a hybrid

Figure 3. Text embedding computation: the algorithm finds all
tokens that correspond to the class name and averages them, re-
sulting in a single class embedding.

loss function composed of two terms: a binary cross en-
tropy loss and a logarithm of the hyperbolic cosine function
applied to the dice loss. Using mi and mgt

i to respectively
indicate the predicted and ground truth masks, we define the
loss as follows:

LBCE(m
gt
i ,mi) = −mgt

i log(mi) + (1−mgt
i ) log(1−mi)

N

LDICE(m
gt
i ,mi) = 1− 2mgt

i mi + 1

mgt
i +mi + 1

L(mgt
i ,mi) = log

(
cosh

(
LDICE

))
+ LBCE

Our loss function differs from the one in [22], where Bi-
nary Cross Entropy was used to train the grounding model.
We use dice loss because of its increased performance in
segmentation tasks, as demonstrated in [16], which com-
pared several loss functions for the task of semantic seg-
mentation. The results showed that the logarithm of the hy-
perbolic cosine of the dice loss had the best performance.
The performance of several loss functions for this task are
shown in Table 4.

4. Experiments and Results
4.1. Datasets

We generated training and validation datasets containing
10k and 1k images using the training classes from Split-1 of
Pascal VOC from [22] ensuring that each image contained
two objects from different classes. For testing, we generated
three datasets, each composed of 1k images: one containing
only seen classes, one whose images contained both a seen
and an unseen class, and one using only unseen classes.

4.2. Evaluation Metrics

To evaluate the grounding model performance we use the
category-wise mean Intersection-over-Union (mIoU) fol-
lowing [22], which is defined as:

mIoU =
1

C

C∑
c=1

IoUc



Dataset Size Test Set mIoU

Training Images Test Images Seen Seen+Unseen Unseen

Baseline [22] 10k 1k 73.07 57.08 46.59
Baseline [22] 40k 1k 78.93 66.07 57.93
Improved model 10k 1k 77.20 67.50 58.43
Improved model (with scoring) 10k 800 78.05 68.08 61.77

Table 2. Quantitative results from the evaluation of grounded generation. Our model has been trained on a synthetic training set,
which consists of images of two objects from only seen categories, and tested on a synthetic test set, which consists of images with two
objects of both seen and unseen categories. Our model (with dropout = 0.1), as observed in rows 3 and 4, outperforms the model from the
paper [22], which we consider as the baseline. The “with scoring” in row 4 refers to scoring the test images using the CLIP-IQA+ [39]
metric, ranking them and selecting the top 800 ones for evaluation.

where C is the total number of target categories, and
IoUc is the Intersection-over-Union for the category with
index c.

4.3. Implementation Details

We use the pre-trained Stable Diffusion v1.5 from Run-
wayML [30] as implemented in the HuggingFace diffusers
library [38] as the diffusion model and CLIP [27] as our
text encoder. We follow the approach in [22] and use a
Mask R-CNN [24] model trained on COCO [23] to gen-
erate the ground truth segmentation masks. We train our
grounding model on an NVIDIA TITAN RTX GPU for 10
epochs, using a batch size of 1, while [22] trains the model
for a single epoch with a batch size of 8. We use the Adam
optimizer [18] with β1 = 0.9 and β2 = 0.999 and a con-
stant learning rate of 1e− 4.

4.4. Quantitative Results

4.4.1 Grounded Generation

Table 2 shows the results from the evaluation of our ground-
ing model. We compare our results to [22] (trained on 10k
and 40k samples), which we use as a baseline for our ex-
periments on 10k samples. Our model significantly outper-
forms the baseline on the unseen and seen+unseen setups,
which suggests it can generalize well and clearly highlights
its open-vocabulary abilities. Its performance on seen cat-
egories is on par with the baseline. This is because we in-
duced better regularization by using a dropout of 0.1 in our
grounding model. In [22] the test images are cherry-picked,
ensuring the generation quality and the accuracy of the seg-
mentation masks predicted by the off-the-shelf segmenta-
tion model. To mimic this we evaluate our model on the top
80% of the test set as scored with CLIP-IQA+ [39] in the
“with scoring” row, in addition to an evaluation on the full
test set.

Prompt Training Seen Test Unseen

x and y 61.34 39.28
a photograph of x and y 60.39 37.95
a photograph of x 60.34 34.16
x 61.14 33.54

Table 3. Quantitative results for comparison of different
prompts. Segmentation accuracy (mIoU) comparison on the
training and test unseen subsets of pascal-sim for different prompts
used to train the segmentation model. The model was trained for
a single epoch without dropout.

4.4.2 Prompt Engineering

We compared the effectiveness of different text prompts to
ground images, as shown in Table 3. Our model performs
best when the input prompt is “x and y” where x and y are
the class names of the depicted objects. We assume this
behavior is due to CLIP representing text as a bag of words,
and a more extensive prompt would push the embedding
semantics further away from the grounding targets.

4.4.3 Epoch-Based Training

Figure 4 shows that our grounding model performance im-
proves when training with multiple epochs. We train our
model for 10 epochs in contrast to the approach in [22],
where the authors train the grounding model for a single
epoch. We use the best checkpoint on the validation set
(obtained at epoch 10). The iterative learning process grants
more opportunities for our model to capture more complex
information regarding the shape of the objects, which ulti-
mately helps in predicting better masks.

4.5. Visualization

We illustrate our results in Figure 5. Our grounding
model is able to successfully ground objects in the segmen-



Figure 4. Semantic learning curve of our model measured us-
ing the mIoU. The model was trained on 10k and validated on 1k
synthetic images generated using Stable Diffusion v1.5.

Figure 5. Comparison between Mask R-CNN and the ground-
ing model: each column shows the image generated by Stable
Diffusion, the masks identified by Mask R-CNN, and the masks
from the grounding model.

tation masks, even beyond the capabilities of the off-the-

shelf detector used for the ground truth. This demonstrates
the open-vocabulary abilities of our model.

4.6. Ablation Studies

We conduct several ablation studies using a smaller
dataset of 1k images containing two objects from the train-
ing classes of Pascal VOC Split-1 [22]. We use a validation
set of 200 images with seen classes and three test sets, one
for each of the seen, seen+unseen, and unseen setups, each
containing 200 samples.

4.6.1 Loss Function Comparison

We compared the effectiveness of four loss functions: Bi-
nary Cross Entropy (BCE), as used by [22], which we con-
sider the baseline, Dice [35], a combination of Dice and
BCE and our loss function, which combines BCE and the
logarithm of the hyperbolic cosine function (log-cosh) of
the dice loss as shown in Table 4. We trained the model for
one epoch without dropout and found that all the loss func-
tions improved over the baseline for the seen and unseen
setups. However, only our loss function significantly out-
performed BCE on the unseen setup, improving the mIoU
by 3%. Moreover, it also achieves the best mIoU on the
seen+unseen setup, with an improvement by 2% over BCE.

Loss Function Seen Seen+Unseen Unseen

BCE 56.98 42.07 35.51
Dice [35] 59.16 43.75 35.44
Dice [35] + BCE 58.72 42.73 35.16
Log-Cosh Dice [16] + BCE 58.20 44.26 38.23

Table 4. Ablation study (mIoU) for the loss function. The model
was trained for one epoch without dropout on 1k images and tested
on 200 images.

4.6.2 Stable Diffusion Versions Comparison

We assessed the impact of using different versions of Stable
Diffusion to generate the training dataset as shown in Ta-
ble 5. We also provide a qualitative comparison, shown in
Figure 6. In particular, we compared the version 1.5 base
model to a fine-tuned checkpoint [6] and to version 2.0. We
followed the same experimental setup as other ablations ex-
periments, generating a training set of 1k images, a valida-
tion set of 200 images, and three test sets, each composed
of 200 images for every competing model.

We trained the segmentation models for 10 epochs, using
a dropout of 0.2. The evaluation results in Table 5 show that
version 2.0 performs worse on all three test setups, scoring
between 1% and 3% less. We presume the issue is in the
quality of generated images, which are qualitatively worse
and do not correctly represent the two objects specified in



Model Seen Seen+Unseen Unseen

Stable Diffusion 1.5 67.96 51.61 41.90
Stable Diffusion 2 66.40 48.04 39.20

Table 5. Ablation on Stable Diffusion versions. Comparison of
performance (mIoU) using images generated by Stable Diffusion
v1.5 and Stable Diffusion v2. Both models were trained for 10
epochs using the log-cosh loss and a dropout of 0.2

Figure 6. Qualitative model comparison: images generated us-
ing Stable Diffusion version 1.5, its fine-tuned checkpoint and ver-
sion 2.0 from top to bottom. The prompt classes were person and
cow, person and pottedplant, boat and sheep from left to right.

the prompt. Moreover, generating a single sample from ver-
sion 2.0 takes around twice the time of version 1.5 (7 sec-
onds versus 3 seconds on an NVIDIA A100), and it more
than doubles the storage requirements, amounting to 120
MBs for a single sample versus 53 MBs. For the fine-tuned
checkpoints we used a similar setup and, since they share
the same U-Net architecture, a cross-comparison between
the training datasets was possible by training the segmen-
tation model on the dataset from either the base (standard)
or fine-tuned (high quality) models and evaluating on both
test sets. The results are shown in Table 6. As expected,
both models perform slightly worse on the opposite dataset
since the feature maps encoded by the U-Net may change as
a result of additional training, but, surprisingly, the model
trained using the fine-tuned dataset (high quality) improves
on the unseen setup for the standard dataset. This model is
also significantly better on the high-quality dataset, beating
the model trained on the standard dataset by up to 9% on the

unseen setup. This is most likely due to the higher quality of
generated images. The CLIP-IQA+ [39] scores of the two
datasets, shown in Table 7, also confirms the higher quality
of the fine-tuned checkpoint samples. Some hand-picked
high-quality generations can be seen in Figure 7.

Figure 7. High-quality samples. Hand-picked images generated
using the fine-tuned checkpoint [6] of Stable Diffusion v1.5

4.6.3 Impact of Dropout

We compared the impact of dropout on model training using
the 10k dataset and its 1k test sets by training the model for a
single epoch with various dropout values, as shown in Table
8. The results show that dropout is beneficial for training,
and the best results were obtained by using a 0.1 dropout.

5. Limitations

Figure 8. Overview of limitations. From left to right: texture
transfer from a sheep to a cow, wrong proportions between a sheep
and a bottle, large mask for a missing object (umbrella) in an im-
age and overlap of masks due to the bag of words behavior of CLIP

While the model shows impressive grounding abilities,
it still has some limitations stemming from itself or the dif-
fusion model as shown in Figure 8. First, generating im-
ages with multiple object categories is not trivial: the im-
ages may contain only a single object, may not respect pro-
portions between objects (e.g., generating a bottle as tall
as a cow), and may mix visual properties of the target se-
mantic classes (e.g., generating a horse with the texture of a
sheep). This is an inherent limitation of the chosen diffusion
model, and other approaches [21] have been shown to par-
tially tackle some of these issues. Regarding the segmenta-
tion model, there are three main limitations, the first being



Testing Dataset

Standard High-Quality

Training Dataset Seen Seen+Unseen Unseen Seen Seen+Unseen Unseen

Standard 67.96 51.61 41.90 68.24 50.95 35.63
High-Quality 65.07 49.63 42.31 70.98 57.15 44.74

Table 6. Ablation on standard and high-quality data. Comparison of models trained on the Stable Diffusion v1.5 base model and a
fine-tuned checkpoint that generates higher quality samples. All models were trained for 10 epochs with the log-cosh loss using a 0.2
dropout.

Dataset CLIP-IQA+ Score

Standard 70.34
High-Quality 75.50

Table 7. Ablation on standard and high-quality data using
CLIP-IQA+. CLIP-IQA+ [39] scores of the 1k training dataset
generated by the base Stable Diffusion model v1.5 and of the one
by its fine-tuned checkpoint.

Dropout Seen Seen+Unseen Unseen

0 74.08 57.52 45.48
0.05 72.66 58.46 46.16
0.1 73.54 59.72 49.99
0.2 73.60 57.72 43.05

Table 8. Ablation on effect of dropout on model performance
Impact of dropout regularization on models trained for one epoch
using the 10k training dataset and the 1k test sets.

that CLIP embeddings behave as a bag of words, thus for
a prompt such as “x and y” the masks might overlap, espe-
cially if the two objects are from close semantic categories
(e.g., horse and cow). This effect may be reduced using
simple embeddings arithmetics, namely subtracting all the
other objects embeddings from the input to the segmenta-
tion model, but further research is needed. The second lim-
itation is that the model is not explicitly trained with nega-
tive examples: the training procedure assumes that the class
represented by the embedding exists in the image, which re-
sults in the model outputting a mask that covers the whole
image if the target object is not represented. Finally, as the
model is trained using the U-Net feature maps, it cannot be
directly applied to a real image, and thus a second zero-shot
object detection method must be trained. This limitation
may be overcome by applying one step of the forward pro-
cess of diffusion to a real image and obtaining the features
from the reverse process step.

6. Discussion and Conclusion

In this paper, we presented an approach to overcome the
constraints of the grounding model proposed in [22] to seg-
ment multiple classes in the generated image. To overcome
the limitations, we used Stable Diffusion version 1.5, a bet-
ter prompt engineering strategy, and improved the training
process via regularization and a hybrid loss that operates
locally and globally to segment complex shapes. Exten-
sive qualitative and quantitative experiments show that our
method is superior to the baseline model proposed in [22],
even when less data is available. Future works may investi-
gate fine-tuning Stable Diffusion v1.5 with a segmentation
dataset to generate images closer to the target distribution
and preprocessing the object embeddings by subtracting the
embeddings of all other represented objects, as this has been
shown to produce sharper masks in our qualitative experi-
ments. Moreover, our training procedure assumes that the
two classes in the prompt are present in an image, causing
the model to output a large mask covering most of the im-
age for non-existing objects. Adding negative examples to
the training procedure could counter this issue.

7. Difficulties and Contribution

The primary challenge of this project was the quality of
the code from the original paper [22]: most scripts were in-
complete and models for segmenting generated images with
multiple objects were not provided thus we had to re-write
the code from scratch. Moreover, the dataset generation was
slow and cumbersome, requiring around 2.5 days to gener-
ate the 10k training dataset, which occupied around 500GBs
of storage. The validation and testing datasets required an
additional 1 day. The individual contributions of each group
member are listed in Section A of the appendix.
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Appendix

A. Individual Contributions
Table 9 lists the project tasks and the group members assigned to them.

Task Assignee

Understanding the original paper and explaining techniques to the other team members Everyone
Understanding the original code base Everyone
Idea generation and researching potential improvements Everyone
Researching image quality metrics Ankit, Walter, Didier
Updating the original code to use Stable Diffusion 2 (did not work) Didier
Re-implementing the U-Net feature extraction within the HuggingFace diffusers library Walter
Loss function research and experiments Ankit
Mask Refinement Experiments (CascadePSP) Tsatsral
Comparison of Stable Diffusion models (1.5, 1.5 fine tuned, 2) Walter
DINO integration and experiments Ioanna
Prompt engineering, embedding averaging and experiments Walter
Qualitative results generation Ioanna, Walter, Tsatsral
Dropout experiments Ankit
Visual Prompting experiments with camera position and visual adjectives (not used) Andre
Changing the visual tokens by flattening (not used) Tsatsral, Ioanna, Didier
Adding an MLP to improve the multi class segmentation (not used) Ioanna, Tsatsral, Didier
Improving the transformer decoder and MLP code for multi class segmentation (not used) Ioanna, Didier, Tsatsral
Dataset generation script Walter, Ankit
Generation of the 1k, 10k validation and test datasets Ankit
Integration of the image quality metric Walter, Ankit
Dataset scoring and selection Andre
Generate & Segment demo script Walter
Documentation of the GitHub repository Walter, Ankit
Creating a poster of the project Everyone
Poster Presentation Everyone
Writing the report Everyone

Table 9. Individual Contributions. Project tasks and assigned group members.



B. DINO Feature Maps

DINO has demonstrated emergent object decomposition abilities [1]. Thus, we experimented with concatenating its
saliency map to the output of the transformer decoder. The concatenated vector is then fed to the MLP, which produces
the mask embeddings. This has resulted in worse performances than our improved model, except for the seen setup by a
negligible margin, as shown in Figure 10. While these results are not encouraging, other approaches such as LERF [17] have
shown that DINO can help regularize grounding models; thus, further research is recommended.

Model Dropout Scoring Seen Seen+Unseen Unseen

Improved model + DINO 0.1 No 75.95 61.43 46.70
Improved model + DINO 0.2 No 76.94 64.89 52.75
Improved model + DINO 0.1 Yes 76.69 62.80 50.90
Improved model + DINO 0.2 Yes 77.74 65.52 56.16

Improved model 0.1 No 77.20 67.50 58.43
Improved model 0.1 Yes 78.05 68.08 61.77

Table 10. Ablation results using DINO. Integrated DINO saliency map in the segmentation model of our improved model with different
dropout rates and scoring using CLIP-IQA+ [39].

We performed epoch-based training as mentioned in Section 4.4.3 for the improved model with DINO saliency maps as
shown in Table 10. We provide the training and the validation mIoU plot for the mentioned models, shown in Figure 9. The
plot shows that the model underperforms when compared to our improved model, and the one trained with a 0.1 dropout
starts to overfit, as evident in Figure 9a.

(a) Training with 0.1 dropout (b) Training with 0.2 dropout

Figure 9. DINO architecture training. Training and Validation mIoU for the architecture using the DINO saliency maps on the training
and test datasets with 10k and 1k samples respectively.

C. Performance Comparison Using CascadePSP

CascadePSP [5] is a deep learning model that refines segmentation masks, producing high-resolution masks from coarse
ones. We compared the impact training the grounding model with refined masks has on performance by training it with
1k samples with high-resolution masks and evaluating on the three setups, using 200 samples for each. We also conducted
a cross-comparison, in a similar fashion to Section 4.6.2 and, as can be seen in Table 11, this had a minimal impact on
performance, improving the mIoU on the seen setup by 1% while decreasing the performance by the same amount on the
unseen setup.



Standard Refined

Training Dataset Seen Seen+Unseen Unseen Seen Seen+Unseen Unseen

Standard 67.96 51.61 41.90 67.14 51.08 41.65
Refined 68.51 51.35 40.90 68.14 51.20 40.77

Table 11. Ablation on generated segmentation masks. Comparison of models trained using masks produced by Mask R-CNN [24] and
masks refined by CascadePSP [5]. All models were trained for 10 epochs with the log-cosh loss using a 0.2 dropout.

D. Model Performance Across Epochs
We tested the performance of all models mentioned in Table 10 at each epoch using the saved checkpoints for the seen,

seen+unseen, and unseen setups, as shown in Figure 10. The plots in the Figure 10 show that our improved model with
scoring consistently performs better than the other models.

(a) Testing mIoU on seen classes. (b) Testing mIoU on seen+unseen classes. (c) Testing mIoU on unseen classes.

Figure 10. Model performance across epochs: ablation experiment testing the mIoU at different epochs on seen, seen+unseen, and
unseen classes for all models mentioned in Table 10.

E. Funny Results From Stable Diffusion
Figure 11 shows some funny images from our training set generated by Stable Diffusion v1.5, highlighting its limitations

in generating images with multiple objects.

Figure 11. Funny generations: a few hand-picked funny images generated by Stable Diffusion from the training set.



F. Top and Bottom Scored Images From The Training Set
Figures 12 and 13 depict the top 64 and the bottom 64 images on the training set ranked using the CLIP-IQA+ [39] metric.

Figure 12. Best training images. Top 64 images from the training set as scored by CLIP-IQA+ [39].



g

Figure 13. Worst training images. Bottom 64 images from the training set as scored by CLIP-IQA+ [39].



G. Top and Bottom Scored Images From The Test Unseen set
Figures 14 and 15 depict the top 64 and the bottom 64 images on the test unseen set ranked using the CLIP-IQA+ [39]

metric.

Figure 14. Best test images. Top 64 images from the test unseen set as scored by CLIP-IQA+ [39].



Figure 15. Worst test images. Bottom 64 images from the test unseen set as scored by CLIP-IQA+ [39].
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