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Abstract

The LHC particle accelerator collides protons at high energies, which produce
heavy unstable particles that decay into lighter particle sprays known as jets. De-
termining which fundamental particle a jet originated from is known as jet tagging.
Recent machine learning advances have allowed multiple new approaches for jet tag-
ging, of which the current benchmark at the CMS detector is the Particle Transformer
model. In this research an attempt is made to increase the accuracy of this model
by performing a hyperparameter optimization study using a novel centralized ma-
chine learning platform created at CERN. First the original model is trained on the
Kubeflow platform, and subsequently a hyperparameter optimization is executed.
Due to memory- and execution time constraints the validation accuracy of the model
is somewhat lower when trained on Kubeflow. However, the hyperparameter opti-
mization results in six configurations of which two have higher accuracies than the
previously trained model on Kubeflow. The results are promising and it is assumed

more optimization is possible and further research is encouraged.
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1 Introduction

The Large Hadron Collider (LHC) located on the border of Switzerland and France is
the largest particle accelerator in the world. It is used by Particle Physicists to study
the quantum fields of matter and forces of the universe. In the LHC accelerator, with
a circumference of almost 27 kilometres, two beams of protons are accelerated to ultra
relativistic speeds, before they are made to collide. Analysing these particle collisions
helped to form, what is now known as: the Standard Model of particle physics. It is the
model that summarizes our understanding of the forces and particles in the universe at a

fundamental level.

When two protons produce a high-energy collision, new unstable particles can be created
from the collision energy. These particles, in turn, decay and produce sprays of outgoing
particles (Qu, Li, & Qian, 2022a). Detector systems such as ATLAS and CMS measure the
trajectories and energies of these particle sprays and reconstruct a so-called event for each
collision. The goal is then to identify the events that contain interesting physics processes,
which for example lead to the discovery of the Higgs boson in 2012 (Aad et al., 2012). This
thesis is written based on event data and models from the CMS-collaboration at CERN.

The sprays of outgoing particles that form an event are called jets, and a crucial aspect of
the analysis process is identifying which fundamental particle the jet originated from. The
classification of these jets is known as jet tagging. Based on a novel dataset consisting of
over 100 million jets, researchers at CERN have recently proposed a new architecture to
classify jets resulting from particle collisions, called the Particle Transformer (Qu et al.,
2022a).

In this research an effort will be made to increase the accuracy of the Particle Transformer
jet tagging architecture, by performing a hyperparameter optimization study. This will be
done using a centralized machine learning platform launched by CERN in 2021 (Golubovic
& Rocha, 2021). This is a service that was designed due to rising number of machine

learning and deep learning applications in physics research.

In chapter 2 the theoretical background necessary to perform the hyperparameter opti-

mization on the Particle Transformer algorithm will be described. It will explain concepts



such as the standard model, jet tagging and hyperparameter optimization. In chapter 3
the resulting research question will be defined, and the methodology of the research will
be explained. Subsequently, in chapter 4 the results of the research will be presented and

analysed. Finally chapter 5 and 6 include the discussion and conclusion.



2 Theoretical background

2.1 Particle Physics at CERN

Discovering what the fundamental building blocks of the universe are is a fundamental
branch of physics called High-Energy Physics (HEP). For approximately a century physi-
cists have been building machines known as particle accelerators, which force collisions
between particles at high energy levels and help us get a deeper understanding of the

world at the smallest scales.

2.1.1 The Large Hadron Collider

The largest and most recent of these high energy particle colliders is the Large Hadron
Collider (LHC) on the border of Switzerland and France (Briining, Burkhardt, & Myers,
2012), constructed by physicists working for the international research institute CERN. It
consists of two particle beams that go through an underground tunnel of 27 kilometers in
circumference, in which protons collide with each other in four different interaction zones.
The tunnel was originally constructed for the Large Electron Positron Collider (LEP), an

electron-positron particle accelerator that was designed for precision experiments.

The goal of the LHC is different and according to Briining, Burkhardt and Myers (2012) can
be described as a discovery machine. It uses the collisions of hadronic particles, proton-
proton collisions to be precise, to explore new and heavier particles such as the Higgs

boson.

2.1.2 The Standard Model

Our current understanding of the fundamental building blocks of the universe can be
summarised in a theory known as "The Standard Model’ (figure 1). It has been developed
by physicists over the last century and has proven successful in predicting and describing
particles and their interactions (van der Poel, 2012). Robert Oerter in his book sketches the
Standard Model as "The Theory of Almost Everything’, as it gives a quantum description of
three of the four fundamental forces of nature: the electromagnetic force, the strong nuclear
force and the weak nuclear force. The only fundamental force that remains unexplained

at a quantum level in the Standard Model is gravity (Oerter, 2006).
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Figure 1: A schematic overview of the current Standard Model. Included are the fundamental
particles of the universe: the twelve fermions, consisting of quarks and leptons, and five bosons.
The brown loops describe which of the bosons pair up with which of the fermions (Workman,
n.d.).

The fundamental building blocks of matter are called the fermions, and are grouped under
quarks (purple in figure 1) or leptons (green in figure 1). A proton for example is composed

of two 'up quarks’ with a charge of % and one 'down quark’ with a charge of —%.

These fermion particles can interact when they are coupled with one of the carriers of the
fundamental forces. These carriers, or bosons, can be divided in two groups: the gauge
bosons (red in figure 1) or the scalar bosons (yellow in figure 1). The photon is the boson
that carries the electromagnetic force, the gluon corresponds to the strong force and the
Z- and W boson to the weak force (van der Poel, 2012). The brown loops in figure 1

demonstrate which elementary particles can pair up with which of the bosons.

As opposed to the LEP, which worked at lower energy levels, the main goal of the LHC is

to explore the Standard Model in the TeV range, in the search of new physical processes



or fundamental particles. The way this is done is by producing very heavy particles (Top
Quarks and W-, Z- and Higgs-bosons) in the particle accelerator and studying the decay
rates of these unstable particles. The observed decays are compared to the predictions of
the Standard Model to test whether the known forces describe the data. Physicists hope
to find a deviation from the Standard Model expectation, which would be a discovery of a

new particle or force.

2.2 Detectors and collisions

The Large Hadron Collider at CERN consists of two beams where protons will be acceler-
ated and made to collide at an energy of 7TeV per beam, resulting in a 14TeV proton-proton
collision. The beams cross at four major interaction regions, where the particles are made
to collide and the products of these collisions are detected by four detectors: Atlas, Alice,
CMS and LHCb. Experiments such as Atlas and CMS have similar research goals, however
they use different technological approaches (Chatrchyan, 2008). This thesis will use data
generated from the CMS detector, therefore a deeper background of this experiment will

be given.

2.2.1 The CMS detector

The Compact Muon Solenoid (CMS) detector is one of the 4 detectors of the LHC at CERN.
As a general-purpose detector, its goal is to find any new physics phenomena coming from
the LHC.

The name comes from the fact that, despite the large amount of detector material it
contains, at 15 metres high, 21 metres long and a weight of 14,000 tonnes it is still relatively
compact. In addition, it is specifically designed to accurately detect the lepton particles
known as muons (see figure 1). Finally it consists of a solenoid magnet able to generate a
magnetic field of 4 Tesla, which is about 100,000 times the strength of the magnetic field
of the earth.

When two protons collide, new unstable particles are created that decay and produce
sprays of outgoing particles. To measure and identify these sprays of outgoing particles,
the detector consists of multi-layered subdetector systems each responsible for the tracking

of different particles, demonstrated in figure 2. Together the tracking system consists of



over 135 million electronic sensors covering the area of a tennis court (Chatrchyan, 2008).
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Figure 2: A slice showing the cross-section of the CMS-detector and its multiple layers. Demon-
strated are where muons, electrons, charged- and uncharged hadrons and photons are being de-
tected (Davis, 2016)

The most inner layer is the silicon tracker, which tracks the path of charged particles. The
following layer is the electromagnetic calorimeter or the ECAL-detector, which uses scintil-
lation light to detect electrons and photons and their energies. The hadron calorimeter or
the HCAL is the next layer and, as the name suggests, detects both charged and uncharged
hadrons. The largest layer of the detector is the part dedicated to detecting muons. This
is due to the fact that muons are highly penetrative particles (Lipari & Stanev, 1991) and
can pass meters through iron walls, however leave a trail of ions as they pass through the

muon chambers.

2.3 Jet tagging

With the help of all the tracking systems, the detector measures the positions, trajectories
and energies of these particle sprays and reconstructs the event for each collision. It
basically functions as a camera taking 40 million 3D photographs per second, capturing
the result of a particle collision. The goal is then to identify the events which include an

interesting physics process, for example the production and decay of Higgs bosons in 2012



(Aad et al., 2012).

The spray of outgoing particles that form an event are called jets, and a crucial aspect
of the analysis process is identifying which fundamental particle the jet originated from.
The classification of these jets is known as jet tagging. Traditionally, jet tagging was done
by applying cut-based selection criteria, inspired by the laws of quantum chromodynamics
(QCD) (Larkoski, Moult, & Nachman, 2020). The recent rise of machine learning, however,

has allowed multiple new approaches of jet tagging.

2.3.1 Jet representations

Jets can be described in different ways, such as images, sequences, trees, graphs, or a set
of constituent particles. The image-based representation is based on information obtained
from calorimeters, which measure the energy deposition of a jet. In this method, each pixel
of the calorimeter is coloured according to its energy deposition, which creates an image
for the event (figure 3). This representation has been extensively studied, and using a
Convolutional Neural Network, a significant improvement in jet tagging performance was
found over the traditional cut-based approach (Cogan, Kagan, Strauss, & Schwarztman,
2015). However, it is hard to store additional information about particles in the image
and the approach is computationally highly inefficient, since by far the most pixels of the
images will be blank (Qu & Gouskos, 2020).

Another way to describe jets is as a collection of particles, which is more natural to its
physical representation (figure 3). A collection of particles, however, is a general term,
not immediately applicable in a machine learning dataset. A better fitting data structure
could be a list or a binary tree. These require a manually imposed order to the particles,

which in practice can turn out to be inaccurate (Qu & Gouskos, 2020).

2.3.2 ParticleNet

In recent research a new deep-learning approach for jet tagging is proposed by introducing
a novel way to represent jets. As opposed to looking at jets as an ordered structure, such
as a list or a binary tree, they can be viewed as a ‘particle cloud’ (figure 3). A structure
that resembles the 3D ‘point cloud’ representation often seen in computer vision, where

all points have coordinates and are themselves unordered. Using this novel representation
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Figure 3: Three different jet representations. Demonstrated on the left is an image based repre-
sentation of a jet (Cogan et al., 2015). In the middle a jet representation seen as a collection of
particles with an ordered structure (Qu, 2019). On the right the most recent approach of viewing

jets as particle clouds (Qu, 2019).

of jets, a customized neural network called ‘ParticleNet’ was designed. This ParticleNet

algorithm was found to be significantly more accurate than all previous jet tagging methods

(Qu & Gouskos, 2020).

ParticleNet is based on the concept of a Dynamic Graph Convolutional Neural Network,
which is a form of a fast emerging deep-learning approach called Graph Neural Networks
(GNN) (Wu et al., 2021). Deep learning has revolutionized many machine-learning tasks
such as image classification or natural language understanding. However, in recent years
there has been an increasing number of applications in which data is more complex, and
it is represented in a graph with underlying relations and connections between so-called
nodes. Consider for example the network of social media connections or a network of train
stations. These Graph Neural Networks have formed the basis of performing more accurate
machine learning tasks on data consisting of these graph representations, such as jets in

the particle cloud representation.

2.4 Particle Transformer

Deep learning and multiple novel jet representations have improved jet tagging significantly
in recent years, however, researchers in the CERN CMS collaboration found that a lack of

a large public dataset has limited further improvement of jet tagging algorithms. Through



the use of Monte-Carlo simulations, mimicking real events, physicists at CERN have been
able to find a solution to this problem. The result was a dataset called Jetclass, consisting

of over 125 million jets for training, validating and testing of machine learning architectures
(Qu et al., 2022a).

2.4.1 Monte-Carlo simulations

Monte-Carlo simulations have longer been used in high-energy physics to solve similar
problems. The idea behind the simulations is to use randomness in a decisive manner
and mimic operations of complex physical processes. A good example is throwing a coin
thousands of times: when counting the number of heads and tails you can estimate the

chance of each side fairly accurately.

The JetClass dataset is generated using the principles of Monte-Carlo simulations and
consists of ten classes of jets, shown in figure 4. The production and decay of the Higgs-, W-
and Z boson and the top quarks was simulated using a framework called MadGraph. The
evolution of the produced particles (so-called hadronization) was simulated using Pythia.
To make the experiment as realistic as possible, effects of the detector were also simulated
using Delphes (Qu et al., 2022a).

+ H — bb w1 H = cE o1 H — gg w1 H — 4q w1 H — fvgq

‘1t — bgq' ot — bly 1 W — qq 1 7 — qq 1 gq/g

Figure 4: The different classes of jets simulated in the JetClass dataset, displayed as particle
clouds. There are five different Higgs boson jets, as a Higgs boson can decay in multiple different
ways. In the bottom left are the two different top quark jets and the remaining three are W- and

Z boson jets and quark/gluon jets (Qu et al., 2022a).
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2.4.2 Transformer Networks

In recent years transformer models have witnessed large successes in both Natural Lan-
guage Processing and Computer Vision research. It was first proposed in 2017 by re-
searchers at Google Brain as a model used for translation tasks (Vaswani et al., 2017).
However, in recent years the design has slowly grown to be a universal architecture that
has also proven to be powerful for fundamental scientific problems such as the predictions

of protein structures (Tunyasuvunakool et al., 2021).

Similar to recurrent neural networks (RNNs), transformers are designed to process sequen-
tial data such as text or time series. The most accurate neural sequence models follow
an ‘encoder-decoder’ structure. Here, an encoder maps a sequential input x = (x1, ..., z,)
to a sequence z = (21, ..., 2z,). The decoder then outputs a final sequence y = (y1, ..., Yn)-
These models are regressive and use the previously generated output as additional input
when calculating the next. Unlike recurrent neural networks, however, transformers are
able to pass the input sequence in parallel. In natural language processing for example,

this means a transformer does not have to process the data one word at a time.

Transformers follow the same encoder-decoder architecture, which is illustrated in figure
5. Input data first passes through input embedding, where it is mapped to a point in
space understandable by a computer, a so-called embedding space. In natural language
processing, words may have different meanings depending on their place in a sentence. The
positional encoder in the original architecture was a vector that gave context to a word

based on its position.

Using the input embedding and positional encoding a vector can be generated that contains
contextual information about the data and is understandable for a computer. This vector
is passed into the encoder block (on the left in figure 5), in which it passes through a
Multi-Head Attention and feed forward layer. This Multi-Head Attention layer is at the
core of a transformer and allows it to process data in parallel as opposed to the sequential
processing of RNNs. The concept of attention in machine learning can be seen as a way of
giving context to input data, and it is a way of estimating which part of the input should

be focused on.

The decoder block (on the right in figure 5) is similar to the encoder block. It has an
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Figure 5: The architecture of the original transformer, designed by researchers at Google Brain
in 2017. The left half demonstrates the design of the encoder block, and the right half shows its

connections with the decoder block (Vaswani et al., 2017).

attention block that calculates the attention vector for the embedded output. These vectors
are combined with the vector output from the encoder and passed into a second Multi-
Head Attention block, referred to as the encoder-decoder attention block. This part of the
architecture estimates how related each of the input data points are to the output data

points. The following layers then transform the vectors into final probabilities.

2.4.3 Particle Transformer

Based on the notion of jets represented as particle clouds, the novel large JetClass database
and transformer architectures, researchers at CMS have proposed a new jet tagging model
called the 'Particle Transformer’ (ParT), shown in figure 6. This architecture is found to
be significantly more accurate than the previous ParticleNet and it is the current baseline

for jet tagging (Qu et al., 2022a).

The ParT has two different sets of inputs: the particles, an N x C' array consisting of

C features, such as their energies and position, for a number of N particles in the jet;
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Figure 6: The architecture of the Particle Transformer, designed by researchers at Google Brain

in 2017. The left half demonstrates the design of the encoder block, and the right half shows its
connections with the decoder block (Qu et al., 2022a)

as well as the interaction features between pairs of particles, which is a matrix of shape
N x N x C". In every jet tagging task a number of kinematic variables, such as the energy-

momentum 4-vector, p = (E,p,, py, p.), are available for all the particles. This vector is

used to calculate the four interaction features C’:

A=\ (Ya— )2+ (da — )2,
kr = min(pT,aapT,b>Aa

2 = min(prq, prp)/ (Pra + o),
m? = (Ea + Eb)2 - ||pa + pb||2

In these equations y; is the rapidity, a variable representing the force and momentum of
a particle, and ¢; is the azimuthal angle, which is the angle between the particle and
a reference plane. The transverse momentum of a particle pair is calculated as pr; =
(P2, + p;i)%, using the momentum 3-vector p; = (Ps.i, Py.i, D). 1o calculate the final four

particle interaction features the logarithm is taken of A, kr, z and m? (Qu et al., 2022a),

to avoid long tail distributions.

Both the particle and interaction inputs are parsed through a multi-layer perceptron, to
project them into a usable embedding space. Opposed to the standard transformer as
described earlier, the ParT does not add any positional encoding, because its input data is
not dependent on the position it is in. This might seem counter intuitive, but the spatial

information, for example the flying direction, is directly included in the particle input.

The particle embedding is fed into a stack of "L’ Particle Attention Blocks (figure 6) similar
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to the Multi-Head attention blocks explained earlier, and the interaction matrix is added
to every Particle Attention Block as attention weights. The last particle embedding x” is
fed into two Class Attention Blocks, together with a class token that is used to extract
final information from the particle embeddings. The class token is then passed into a final

multi-layer perceptron and SoftMax function to produce the final jet tagging scores.

2.5 Machine Learning at CERN

In recent years machine learning has started to be used in the field of high energy physics,
using it as an alternative to cut-based selections, in particular to detect anomalies in the
search for unknown physics (Pol, Berger, Cerminara, Germain, & Pierini, 2020). The rise
of machine learning also implied the development of libraries providing practical ways of
implementing machine learning on datasets. Well known examples of these libraries are
PyTorch, TensorFlow and scikit-learn. However, a standard procedure for high energy
physicists to perform machine learning tasks on their data was still missing. Many data
scientists, even in the same institution, use different ways to go from raw data to their

machine learning algorithm, leading to underproductivity and suboptimal quality results.

2.5.1 Kubeflow

In 2021 researchers at the CERN IT-department developed and released a centralized
machine learning platform for physicists at CERN to use, with the goal of improving the
overall process of machine learning (Golubovic & Rocha, 2021). The service is based
on Kubeflow, a free open-source machine learning platform offering components from the
whole machine learning pipeline. It can load and pre-process data, perform distributed
model training, serve machine learning models and perform automated hyperparameter

optimization.

2.5.2 Hyperparameter Optimization

Each machine learning model has hyperparameters, a set of parameters that are not learned
by the algorithm. Consider for example the number of neighbours in a K-nearest neighbour
model, or the number of layers in a neural network. The process that is optimizing the
value of these specific parameters is known as hyperparameter tuning or hyperparameter

optimization. The optimization of these parameters can be important in various ways.
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Most importantly, it improves the performance of a machine learning algorithm, by fine
tuning it to a specific problem (Olson, Bartley, Urbanowicz, & Moore, 2016). In addition,
it reduces the amount of human labour put into performing the machine learning and

improves the reproducibility of a study.

In the case of the Particle Transformer used for jet tagging, hyperparameters are the
variables such as the optimizer and inner optimizer used for the algorithm. Others are
concepts such as the batch size and the learning rate used when training. However, no
optimization has been performed for the hyperparameters used while training the ParT

architecture, which will be the goal of this research.
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3 Research and methodology

The focus in this chapter shifts from the more general theoretical background to the specific
research that is addressed in this thesis. First, the research question is defined, after which

the methodology and analysis method are presented.

3.1 Research question

From the theoretical background it can be concluded that there are possibilities to increase
the performance of the jet tagging architecture currently proposed as the baseline for jet
tagging in the CMS experiment. In this research a hyperparameter optimization study will
be performed, with the goal of increasing the accuracy of the current Particle Transformer
architecture and setting a new benchmark for jet tagging at CERN. The research question

is as follows:

"What are the optimal values for the hyperparameters used in the Particle Transformer

architecture used for jet tagging?"

To answer this, three sub-questions are formulated, which together will provide an answer

to the above question.

1. What is the current accuracy of the Particle Transformer architecture when it is

trained on a CERN machine learning platform?

2. What are the results of a hyperparameter studies on the Particle Transformer using
Kubeflow’s Katib?

3. What is the accuracy of the Particle Transformer, when it is trained using new

optimized hyperparameter values?

The next sections include a detailed explanation of how the experiments answering these

questions have been conducted.

3.2 Method

One of the goals of setting up the centralized machine learning platform at CERN was to

improve the quality of machine learning research amongst physicists (Golubovic & Rocha,
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2021). In this section a description of the experiment performed using this machine learning
platform is given. The aim is to increase the reproducibility of the study and encourage

researchers to explore and improve machine learning in particle physics even further.

The study is divided along the three sub questions: first, the implementation of the training
of the particle transformer on CERN’s centralized machine learning platform (Kubeflow);
second, the use of the Katib tool available on this platform, to perform a hyperparameter
optimization; finally, the comparison of the network with its optimized hyperparameters

to the benchmark from the first part of the studies.

3.2.1 JetClass dataset

The first part of the study, reproducing the original training of the Particle Transformer
on Kubeflow, will be described in the current and following two sections. The first step
that needs to be taken is to transfer the dataset into a place where it can be used by
the platform. Kubeflow has an integrated compatibility with EOS, a disk only storage
technology created by the CERN IT department for LHC use cases (EOS, 2010).

The Particle Transformer repository on Github (Qu, Li, & Qian, 2022b) includes multiple
datasets, among them also the large JetClass dataset containing over 125 million jets.
The repository also contains a python file called get_datasets.py. Upon execution, this
file downloads the chosen dataset from the CERN server to be stored on the user’s home

directory on EOS.

3.2.2 Memory

The novelty of the JetClass dataset partly comes from its large size, consisting over 125
million jets. The large number of jets in this dataset, combined with the new transformer
architecture, result in a significant increase in jet tagging accuracy. However, the 175
GigaBytes of data also bring some memory issues when attempting to train the model on
the Kubeflow platform, preventing the model from being able to be trained on a regular

computer.

To deal with these memory constraints, a modified script is developed to be able to run the

training, which can be found in the appendix section 7.1. It is based on the original script
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presented in the Particle Transformer repository, however adjusted in multiple ways. An
important consequence of this modification for this research, is that not all jet data will
be used to train the model. The original shell script is adjusted to only load a fraction of

the dataset, reducing the memory use from the original 175GB to 5GB.

The training of the Particle Transformer makes use of Weaver, a python package designed
by researchers at CERN, which aims to provide a streamlined machine learning framework
for High Energy Physics applications (Qu, Harju, & Li, 2020). In an attempt to deal with
large datasets Weaver does not load all files into memory directly, but rather incrementally.
When training a model, it is important to then properly mix different event types to

improve the training performance and stability.

Weaver accomplishes this by putting all input files into N groups and then load them simul-
taneously with an N amount of 'worker threads’. The variable setting N is ’~--num-workers’
and in this research will be set to 1. Highlighted below is a fragment from the script
made to run the training of the Particle Transformer on Kubeflow, which shows how the

discussed -num-workers variable is declared.

dataopts="--num-workers 1 --fetch-step 0.01"

A different variable that is modified when training the model on Kubeflow for the first
experiment is a variable called '--batch-size’. This hyperparameter can be described as
the amount of training samples that are used in one single iteration to train the model.

The batch-size will be reduced from 512 to 8 to save memory.

# PN, PFN, PCNN, ParT

model=$1

if [[ "$model" == "ParT" ]]; then
modelopts="networks/example_ParticleTransformer.py --use-amp"

batchopts="--batch-size 8 --start-1lr 1le-3"
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3.2.3 Convergence

The impacts on the accuracy of the jet tagging architecture, when the size of the dataset
is reduced to a fraction of 0.02 of its original size, have been studied (Qu et al., 2022a).
One of the observations is that the training was already converged after 100K iterations,
compared to the 1M iterations required for the full dataset. Considering this, the variables
samples_per_epoch and samples_per_epoch_val are changed from 1024000 and 12800
to 102400 and 1280 respectively.

As a result a large amount of memory and execution time is saved, that would otherwise
have been spent on already converged training. For the same reason the amount of epochs
is changed from 50 to 5. An epoch can be seen as one full training cycle of the network,

meaning the architecture will be trained on the data for 5 cycles.

epochs=5
samples_per_epoch=$((100 * 1024 / $NGPUS))
samples_per_epoch_val=$((100 * 128))

3.2.4 Katib

The second part of the research contains preparing and running a hyperparameter opti-
mization job using the machine learning platform, which will be described in the current
and following section. Kubeflow has a component called Katib that assists in hyperparam-
eter tuning, which works by optimizing a target variable or objective metric. Often this

objective metric is the validation accuracy, but concepts such as loss are often included.

Various hyperparameters can be specified, after which Katib will calculate the objective
metric for different combinations of these hyperparameter values. The way Katib chooses
the different values for the hyperparameters can be set using a search algorithm, such
as grid search or random search. The way the tuning process works is straightforward:
Katib runs multiple training jobs (called t¢rials) in one experiment. FEach trial tests a
different set of hyperparameter configurations, after which Katib outputs the values for

the hyperparameters and their corresponding objective metric (Kubeflow, 2021).
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3.2.5 Pods and containers

The set up for the second part of the research is less straightforward than the set-up for
the training of the architecture. This is because the hyperparameter tuning experiment

that is executed on Katib runs as a so-called Kubernetes pod.

volume _|
| pod
v
0O
contrainer D o
Node Node

Figure 7: A schematic overview of the Kubernetes architecture. Multiple pods can run and
communicate with each other in a node. The pods consists of software-packages called containers

or volumes (Merk, 2022).

Kubernetes has a specific architecture (figure 7) where it consists of nodes, in which pods
are running. Pods are the smallest unit of computing that can be created in Kubernetes
and can communicate with other pods in the same node. These pods can contain one or
more containers, which are ready-to-run software packages that contain all the information

needed to deploy an application or, in this case, an experiment.

Pods can be created using a special type of file called ’yaml-files’: a computer language
specifically used for configuration and data storage or transmission. The yaml-file for this

experiment can be found in the appendix in section 7.3.

A key component in the yaml-file in a yaml, is the docker image it uses. A docker image is

a file that creates the environment of the previously mentioned container, and in principle
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presents the pod with all its needs for the current experiment. For this experiment it
was necessary to include a kerberos secret in the docker image, which makes sure that
the data stored on EOS (behind a user-password) is accessible. Other packages that were
required for the parameter tuning include: weaver-core, pyarrow and more standard
libraries such as numpy, pandas and scikit-learn. The full list of libraries was read from
the ‘requirements.txt file, which can be seen in the snippet of code below. The complete

docker image used for this experiment can be found in section 7.2.

COPY requirements.txt .
RUN export PATH=/home/$NAME/.local/bin:$PATH && \

pip install -Ur requirements.txt --no-cache-dir

Another key-component in the yaml-file is the declaration of the objective metric, hyper-
parameters and search space. These define the metric that will be optimized and the
parameters used in this optimization process. In this experiment the objective metric is
the validation accuracy (Acc), and the goal is to maximize it. The additional metrics that
are outputted are the AvgAcc, Loss and AvgLoss, but these are not the variables that are

being optimized.

objective:
type: maximize
objectiveMetricName: Acc
additionalMetricNames:
- AvgAcc
- Loss

- Avgloss

The three main hyperparameters of this algorithm that will be optimized are the following;:

1. -start-1r: The start learning rate variable, with a search space from 5e-4 to 1.5e-3

2. -batch-size: The batch size integer variable, with the search space ranging from 1

to 64.
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3. -optimizer: The categorical optimizer variable, with the 3 possible options being:

adam, adamW and ranger.

The learning rate parameter can be described as the size of the step taken in the direction
of the gradient, in the process of minimizing a loss function during training. In this
architecture the learning rate is constant for the first 70% of the iterations, after which
it decays down to 1% of its original value. Secondly, the batch size can be described as
the amount of training samples that are used in one single iteration to train the model.
Finally, optimizer are the algorithms that change the attributes of a neural network, such

as weights, in order to minimize the losses.

parameters:
- name: --batch-size

parameterType: int

feasibleSpace:
min: "1"
max: "64"
- name: --start-1r

parameterType: double
feasibleSpace:

min: "5.0e-4"

max: "1.5e-3"

- name: --optimizer
parameterType: categorical
feasibleSpace:

list:
- "adam"
- "adamW"

- "ranger"

The way the different combinations of hyperparameter values are selected is defined by the
search algorithm. In this research the random algorithm is chosen, which randomly selects
values in the search space of the hyperparameters. In the timeframe of this research it is

more effective to do a random search, as opposed to a grid search, in which every single
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combination of hyperparameter values is trained.

algorithm:

algorithmName: random

The last important element in the yaml-file is the request of resources, meaning: CPUs
and GPUs. Multiple GPUs were made available and the amount that the experiment will

use has to be declared in this configuration file.

To summarize, creating a pod with this yaml-file (section 7.3) and docker image (section
7.2) will start a hyperparameter optimization experiment that will optimize the validation
accuracy. It will attempt this by trying different configurations of the hyperparameters,
constrained by their respective search spaces. The set-up for the hyperparameter tuning
using Katib is not fully completed in this research, such that instead a manual tool was
written to perform the optimization, which can be found in section 7.4. However, this is

essentially an identical procedure.

3.3 Result analysis

It is important to consider how the three sub-questions can lead to an evaluation of what
the optimal values for the hyperparameters used in the Particle Transformer architecture

are.

An important concept in evaluating the results is the wvalidation accuracy of the model.
This is calculated by dividing the correct number of predictions by the total number of
predictions. This will output a number between 0 and 1, where 1 means flawless perfor-

mance.

The validation accuracy of the Particle Transformer will be calculated during the training
of the model and during the hyperparameter optimization. Afterwards, these accuracies
will be compared to each other to analyze whether any improvement has been measured.
These accuracies will also be compared to those of other models and the one in the original

research as a benchmark.
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4 Results

In this chapter the result of the machine learning experiment will be presented. In the first
section the results of training the model on Kubeflow will be shown. The results of the

hyperparameter optimization done using Katib is presented in the second section.

4.1 Particle transformer on Kubeflow

The first part of the research was dedicated to training the Particle Transformer model on
the centralized machine learning platform at CERN. As explained in the previous section,
due to memory constraints on the platform, some adjustments to the data and model

training were made. The results of the training can be seen in table 1-3.

H-bw H—oc H—gy H—4q¢ H—olvgqd Z—qi Z—wvw W —=qd t—bgd t—blv
H — bb 0.82342 0.06718  0.01475  0.0117 0.0013 0.03147  0.00407  0.00266  0.04077  0.00268
H — cc 0.05608  0.67693 0.07452  0.07563  0.00342 0.03194  0.01729  0.01687  0.04652  0.0008
H — gg 0.0304 0.04439  0.71967 0.11523  0.00053 0.02124  0.04215  0.0104 0.01575  0.00024
H — 4q 0.00932  0.03469 0.13233 0.73954 0.00214 0.01519  0.00953  0.01534  0.04185  0.00007
H — (vqq’ | 0.00104 0.00465 0.00033  0.00473  0.93764 0.00613  0.00104  0.00571 0.00162  0.03711
Z = qq 0.0717 0.0538 0.03837  0.03806  0.0027 0.48767 0.05044 0.24146  0.01469  0.00111
Z — vy 0.00761  0.02112  0.10167  0.03267  0.00185 0.04311  0.69351 0.06956  0.02796  0.00094
W —qq 0.00106  0.01635 0.01383  0.03375  0.00382 0.15997  0.06067  0.69598 0.01424  0.00032
t — bqq 0.02135  0.01089  0.00711  0.02482  0.00158 0.00094 0.01519 0.00282  0.91335 0.00195
t — blv 0.00277  0.00073  0.00005  0.00013  0.003782 0.00066  0.00165  0.00018  0.00218 0.95383

Table 1: The confusion matrix displaying the performance of the Particle Transformer jet tagging
architecture when trained on Kubeflow. The ’Z — v’ class corresponds to the quark/gluon class
described earlier, and it is treated as the background class. The table displays the distribution
of predictions made by the model for each class. On the diagonal the accuracy for each class is

displayed, summarized in table 2.

‘ All classes H —bb H—cc H—gg H—4g H—lvgd t—byd t—blv W—qf Z—qf Z—vv
ParT ‘ 0.7612 0.8234 0.6769  0.7197 0.7395  0.9376 0.9134 0.9538  0.6960 0.4877  0.69351

Table 2: Summary of the validation accuracies of all the classes combined and for each class
separately. In this table a higher number means a better performance, ranging from 0 to 1, with

1 meaning perfect performance.
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Model Accuracy
ParT (Kubeflow) 0.761
ParT (2M jets) 0.836
ParT (10M jets) |  0.850
ParT (100M jets) 0.861

Table 3: The accuracy of the Particle Transformer trained on Kubeflow (in blue), compared to
the accuracy of the architecture trained on different sizes of the dataset in the original research
(Qu et al., 2022a).

4.2 Hyperparameter optimization

The second part of the research was dedicated to performing a hyperparameter optimization
study. As detailed in the methodology, six different configurations of hyperparameters were
used to train the Particle Transformer model. The resulting accuracies can be observed in
table 4.

-batch-size -start-lr optimizer | Accuracy

19 0.00059 adam 0.755
31 0.00075 adam

40 0.00104 adam 0.753
24 0.00103 adamW 0.743
60 0.00127 adamW 0.745
52 0.00114 ranger

8 0.00100 ranger 0.761

Table 4: The results of the hyperparameter optimization studies performed on Kubeflow. The
values of the three hyperparameters and their resulting validation accuracies are given. The
bottom row, displayed in blue, contains the values of the hyperparameters in the original Particle
Transformer architecture. The configurations that resulted in a higher accuracy than the original

architecture, are displayed in green.
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H—-b H-—ce H-—gy H—4q H—lvg¢ Z—q7 Z—wvw W —=qd t—bgd t— bl
H —bb 0.05859  0.01246  0.01304 0.00122 0.0434 0.00409  0.00389  0.03432  0.00156
H — cc 0.05429  0.67665 0.07160 0.08330 0.00421 0.03467  0.01602  0.02119  0.03745  0.00062
H — gg 0.03184  0.04166 0.71259 0.11971 0.00057 0.02579  0.04038  0.01202  0.01525  0.00019

H — 4q 0.00906  0.03605  0.12441 0.00339 0.01596  0.00921  0.01895  0.03354  0.00003
H — lvgq’ | 0.00127  0.00378  0.00029  0.00403 0.00255  0.00124 0.00613  0.00146  0.02818
Z = qq 0.04548  0.03721  0.02528  0.03421 0.00459 0.05184  0.28577  0.01492  0.00071
Z = vv 0.00855  0.02061  0.09436  0.03195 0.0023 0.04032 0.0709 0.03012  0.00081
W — qq 0.00111  0.01135 0.00886  0.02915 0.00712 0.1195 0.06583 0.01541  0.0003

t — bqq' 0.01989  0.01513  0.00611  0.02772  0.00185 0.00081  0.01102  0.00193 0.001008
t— bly 0.00233  0.00074  0.00003  0.00017 0.0415 0.00047  0.00174  0.00017  0.00249 0.95036

Table 5: The confusion matrix displaying the performance of the Particle Transformer jet tagging
architecture trained on Kubeflow, using the hyperparameters that had the highest accuracy in
table 4. The table displays the distribution of predictions made by the model for each class, with

the classes that performed better than the original architecture displayed in green.
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5 Discussion

In this research the Particle Transformer architecture is trained on a novel centralized
machine learning platform at CERN. The model achieved a validation accuracy of 0.761,

meaning that 76.1% of all jets are classified correctly.

To train this model on Kubeflow, some adjustments are made in the set-up of the model
compared to the original training configuration. The dataset is reduced in size to approx-
imately contain 1 million jets, and the number of iterations and epochs are lowered. This
is done to comply with memory constraints encountered while training on Kubeflow, and
potentially explains the slightly reduced accuracy of the model trained on Kubeflow in

comparison to the original model.

The accuracy found in these results, however, serves as a good benchmark for further
research: the hyperparameter optimization that is performed. Three parameters are chosen
for the hyperparameter tuning investigated in this experiment. Different configurations of
the batch size, start learning rate and optimizer are selected using the random search

accuracy, which results in six new validation accuracies.

Two of the six validation accuracies are higher than the accuracy of the model trained on
the original hyperparameters, and four are lower. However, it is difficult to conclude that a
global optimum is found for the hyperparameters. This is due to the relatively low number
of random trials compared to the many different hyperparameter configurations that are
possible. It is encouraged in further research to attempt the tuning with a higher number
of trials, which in this research is limited due to execution time constraints, to increase

chances of finding the global optimum hyperparameter values.
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6 Conclusion

There are not many environments more suited for machine learning use cases than particle
physics. In the past few decades deep learning algorithms have had a rise and have become
a necessity for the physicists at CERN, since its particle accelerator and detectors generate
billions of events. A centralized machine learning platform created at CERN has helped
giving physicists easier access to their machine learning workflows and pipelines in order

to gain productivity.

The purpose of this research is to use this novel Kubeflow based platform to perform the
first hyperparameter optimization on the Particle Transformer architecture. The specific
goal is to find the optimal values for three hyperparameters in an algorithm that deter-
mines the origin of particle jets, to improve the accuracy of the model. Already with a
random search algorithm and a low number of trials used in this optimization study, a
configuration with higher accuracy than the original model trained on Kubeflow was dis-
covered. These results are promising, and further research is encouraged. The concept of
hyperparameter optimization is promising in particle physics applications and perhaps in

many other applications in general.
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7 Appendix

7.1 Training script

In this section the full training script used for training the Particle Transformer architecture

is presented. Information about specific code used can be found in section 3.2.

#!/bin/bash

set -X

source env.sh

echo "args: $@"

# set the dataset dir via ‘DATADIR_JetClass®
DATADIR=${DATADIR_JetClass}
[[ -z $DATADIR ]] && DATADIR=’./datasets/JetClass’

# set a comment via ¢COMMENT*
suffix=${COMMENT}

# set the number of gpus for DDP training via ‘DDP_NGPUS‘
NGPUS=${DDP_NGPUS}
[[ -z $NGPUS 1] && NGPUS=1
if ((NGPUS > 1)); then
CMD="torchrun --standalone --nnodes=1 --nproc_per_node=$NGPUS $(which
weaver) --backend nccl"
else
CMD="weaver"

fi

epochs=5
samples_per_epoch=$((100 * 1024 / $NGPUS))
samples_per_epoch_val=$((100 * 128))



dataopts="--num-workers 1 --fetch-step 0.01"

# PN, PFN, PCNN, ParT
model=$1
if [[ "$model" == "ParT" ]]; then

modelopts="networks/example_ParticleTransformer.py --use-amp"

batchopts="--batch-size 8 --start-1lr 1le-3"
elif [[ "$model" == "PN" 11; then

modelopts="networks/example_ParticleNet.py"

batchopts="--batch-size 512 --start-1lr le-2"
elif [[ "$model" == "PFN" 11; then

modelopts="networks/example_PFN.py"

batchopts="--batch-size 4096 --start-lr 2e-2"
elif [[ "$model" == "PCNN" 1]; then

modelopts="networks/example_PCNN.py"

batchopts="--batch-size 4096 --start-lr 2e-2"
else

echo "Invalid model $model!"

exit 1

fi

# "kin", "kinpid", "full"
FEATURE_TYPE=$2
[[ -z ${FEATURE_TYPE} 1] && FEATURE_TYPE="full"

if t [[ "${FEATURE_TYPE}" =~ ~(fulllkinl|kinpid)$ 1]; then
echo "Invalid feature type ${FEATURE_TYPE}!"
exit 1

fi

# currently only Pythia
SAMPLE_TYPE=Pythia

weaver \

--data-train \

32



"HToBB: ${DATADIR}/${SAMPLE_TYPE}/train_100M/HToBB_000.root" \

"HToCC: ${DATADIR}/${SAMPLE_TYPE}/train_100M/HToCC_000.root" \

"HToGG: ${DATADIR}/${SAMPLE_TYPE}/train_100M/HToGG_000.root" \

"HToWW2Q1L: ${DATADIR}/${SAMPLE_TYPE}/train_100M/HToWW2Q1L_000.root" \

"HToWW4Q: ${DATADIR}/${SAMPLE_TYPE}/train_100M/HToWW4Q_000.root" \

"TTBar : ${DATADIR}/${SAMPLE_TYPE}/train_100M/TTBar_000.root" \

"TTBarLep:${DATADIR}/${SAMPLE_TYPE}/train_100M/TTBarLep_000.root" \

"WToQQ: ${DATADIR}/${SAMPLE_TYPE}/train_100M/WToQQ_000.root" \

"ZToQQ: ${DATADIR}/${SAMPLE_TYPE}/train_100M/ZToQQ_000.root" \

"ZJetsToNuNu: ${DATADIR}/${SAMPLE_TYPE}/train_100M/ZJetsToNuNu_000.root" \

--data-val \

"HToBB:${DATADIR}/${SAMPLE_TYPE}/val_5M/HToBB_120.root" \

"HToCC: ${DATADIR}/${SAMPLE_TYPE}/val_5M/HToCC_120.root" \

"HToGG: ${DATADIR}/${SAMPLE_TYPE}/val_5M/HToGG_120.root" \

"HToWW2Q1L:${DATADIR}/${SAMPLE_TYPE}/val_5M/HToWW2Q1iL_120.root" \

"HToWW4Q:${DATADIR}/${SAMPLE_TYPE}/val_5M/HToWW4Q_120.root" \

"TTBar: ${DATADIR}/${SAMPLE_TYPE}/val_5M/TTBar_120.root" \

"TTBarLep:${DATADIR}/${SAMPLE_TYPE}/val_5M/TTBarLep_120.root" \

"WToQQ: ${DATADIR}/${SAMPLE_TYPE}/val_5BM/WToQQ_120.root" \

"ZToQQ: ${DATADIR}/${SAMPLE_TYPE}/val_5M/ZToQQ_120.root" \

"ZJetsToNuNu: ${DATADIR}/${SAMPLE_TYPE}/val_5M/ZJetsToNuNu_120.root" \

--data-test \

"HToBB: ${DATADIR}/${SAMPLE_TYPE}/test_20M/HToBB_100.root" \

"HToCC: ${DATADIR}/${SAMPLE_TYPE}/test_20M/HToCC_100.root" \

"HToGG: ${DATADIR}/${SAMPLE_TYPE}/test_20M/HToGG_100.root" \

"HToWW2Q1L: ${DATADIR}/${SAMPLE_TYPE}/test_20M/HToWW2Q1L_100.root" \

"HToWW4Q:${DATADIR}/${SAMPLE_TYPE}/test_20M/HToWW4Q_100.root" \

"TTBar:${DATADIR}/${SAMPLE_TYPE}/test_20M/TTBar_100.root" \

"TTBarLep: ${DATADIR}/${SAMPLE_TYPE}/test_20M/TTBarLep_100.root" \

"WToQQ: ${DATADIR}/${SAMPLE_TYPE}/test_20M/WToQQ_100.root" \

"ZToQQ: ${DATADIR}/${SAMPLE_TYPE}/test_20M/ZToQQ_100.root" \

"ZJetsToNuNu: ${DATADIR}/${SAMPLE_TYPE}/test_20M/ZJetsToNulu_100.root" \

--data-config data/JetClass/JetClass_${FEATURE_TYPE}.yaml --network-config
$modelopts \

--model-prefix
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training/JetClass/${SAMPLE_TYPE}/${FEATURE_TYPE}/${model}/{auto}${suffix}/net
\

$dataopts $batchopts \

--samples-per-epoch ${samples_per_epoch} --samples-per-epoch-val
${samples_per_epoch_val} --num-epochs $epochs --gpus 0 \

--optimizer ranger --log
logs/JetClass_${SAMPLE_TYPE}_${FEATURE_TYPE}_${model}_{auto}${suffix}.log
--predict-output pred.root \

--tensorboard JetClass_${SAMPLE_TYPE}_ ${FEATURE_TYPE}_${model}${suffix} \

"${@:3}"

7.2 Docker Image

In this section the docker image used to build the container for the Kubernetes pod will

be presented. Information about specific code used can be found in section 3.2.

FROM pytorch/pytorch:1.8.1-cudal0.2-cudnn7-runtime

ENV NAME freud

RUN apt-get -qq update && \
apt-get -yqq install git && \
DEBIAN_FRONTEND=noninteractive apt-get -yqq install libpam-krb5 krbb5-user &&

\
apt-get -yqq clean

RUN useradd -m $NAME
USER $NAME
WORKDIR /home/$NAME

COPY krb5.conf /etc/krb5.conf

COPY requirements.txt .

RUN export PATH=/home/$NAME/.local/bin:$PATH && \
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pip install -Ur requirements.txt --no-cache-dir

RUN git clone https://github.com/DidierMerk/weaverpart.git
WORKDIR /home/$NAME/weaver

ENTRYPOINT ["python", "train.py"]

7.3 YAML-file

In this section the YAML-file used to set up the Katib hyperparameter training job will

be presented. Information about specific code used can be found in section 3.2.

apiVersion: kubeflow.org/vibetal
kind: Experiment
metadata:

name: katibjob

spec:
parallelTrialCount: 2
maxTrialCount: 6
maxFailedTrialCount: 1
objective:
type: maximize
objectiveMetricName: Acc
additionalMetricNames:
- Avghcc
- Loss
- Avgloss
algorithm:
algorithmName: random
metricsCollectorSpec:
collector:
kind: Std0Out

parameters:



- name: --batch-size

parameterType: int

feasibleSpace:
min: "1"
max: "64"
- name: --start-1r

parameterType: double
feasibleSpace:
min: "5.0e-4"
max: "1.5e-3"
- name: --optimizer
parameterType: categorical
feasibleSpace:
list:
- "adam"
- "adamW"
- "ranger"
trialTemplate:
primaryContainerName: katibjob
trialParameters:
- name: learningRate
description: Learning rate for the training model
reference: --start-1r
- name: batchSize
description: Size of the batch for the training model
reference: --batch-size
- name: optimizer
description: Optimizer used for the training model
reference: --optimizer
trialSpec:
apiVersion: batch/vl
kind: Job
metadata:
annotations:

"custom-key": "custom-annotation"
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labels:
"custom-key": "custom-label"
spec:
template:
metadata:
labels:
mount-kerberos-secret: "true"
mount-eos: "true"
annotations:
sidecar.istio.io/inject: "false"
spec:
restartPolicy: Never
volumes:
- name: nvidia-driver
hostPath:
path: /opt/nvidia-driver
type: ""
containers:
- name: katibjob
resources:
limits:
nvidia.com/gpu: 1

memory: 16Gi

cpu: 2
requests:
cpu: 2

memory: 8Gi
volumeMounts:
- name: nvidia-driver
mountPath: /opt/nvidia-driver
env:
- name: PATH
value: /opt/conda/bin:/bin:/usr/bin:/usr/local/bin:/opt/
nvidia-driver/bin:/home/freud/.local/bin/

image: registry.cern.ch/dmerk-images/katibjob:latest



command: [’/bin/sh’, ’-c’]

pwd;
nvidia-smi;
PATH=$PATH: /home/freud/.local/bin/;
env;
/home/freud/.local/bin/weaver
--data-train \
"HToBB: /katibjob-4jf1lmgj6-wmp52
eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/HToBB_000.root" \
"HToCC:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/HToCC_000.root" \
"HToGG:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/HToGG_000.root" \
"HToWW2Q1L:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/HToWW2Q1L_000.root" \
"HToWW4Q: /eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/HToWW4Q_000.root" \
"TTBar:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/TTBar_000.root" \
"TTBarLep:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/TTBarLep_000.root" \
"WToQQ:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/WToQQ_000.root" \
"ZToQQ:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/ZToQQ_000.root" \
"ZJetsToNuNu:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/train_100M/ZJetsToNuNu_000.root"
--data-val \
"HToBB:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/HToBB_120.root" \
"HToCC:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/HToCC_120.root" \



"HToGG:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/HToGG_120.root" \
"HToWW2Q1L:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/val_5M/HToWW2Q1L_120.root" \
"HToWW4Q:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/val_5M/HToWW4Q_120.root" \
"TTBar:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/val_5M/TTBar_120.root" \
"TTBarLep:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/val_5M/TTBarLep_120.root" \
"WToQQ:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/val_5M/WToQQ_120.root" \
"ZToQQ:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/val_5M/ZToQQ_120.root" \

"ZJetsToNuNu:/eos/user/d/dmerk/particle_transformer/datasets/

JetClass/Pythia/val_bM/ZJetsToNuNu_120.root"

--data-test \
"HToBB:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/HToBB_100.root" \
"HToCC:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/HToCC_100.root" \
"HToGG:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/HToGG_100.root" \
"HToWW2Q1L:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/HToWW2Q1L_100.root" \
"HToWW4Q:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/HToWW4Q_100.root" \
"TTBar:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/TTBar_100.root" \
"TTBarLep:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/TTBarLep_100.root" \
"WToQQ:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/WToQQ_100.root" \
"ZToQQ:/eos/user/d/dmerk/particle_transformer/datasets/
JetClass/Pythia/test_20M/ZToQQ_100.root" \

39



40

"ZJetsToNuNu:/eos/user/d/dmerk/particle_transformer/

datasets/JetClass/Pythia/test_20M/ZJetsToNuNu_100.root"

--data-config
/eos/user/d/dmerk/particle_transformer/data/JetClass/

JetClass_full.yaml

--network-config
/eos/user/d/dmerk/particle_transformer/networks/

example_ParticleTransformer.py --use-amp

--model-prefix
/eos/user/d/dmerk/particle_transformer/training/JetClass/

Pythia/full/ParT/{auto}/net

--num-workers O --fetch-step 0.01

--batch-size=${trialParameters.batchSize}

--start-lr=${trialParameters.learningRate}

--optimizer=${trialParameters.optimizer’}

--samples-per-epoch 102400

--samples-per-epoch-val 12800

--num-epochs 5

--gpus O

--log /eos/user/d/dmerk/particle_transformer/logs/

JetClass_Pythia_full_ParT_{auto}.log

--predict-output pred.root

--tensorboard JetClass_Pythia_Full_ParT

7.4 Random search script

In this section the python script used to set up the manual selection of hyperparameter
configurations will be presented. The output of this script provided the configurations used

in the experiment.

# Program to manually implement random search algorithm

# hyperparameter tuning on Kubeflow.

from random import randrange, uniform



# Maximum number of trials to perform

trial_count = 6

# Print the random parameter configurations
for i in range(trial_count):

print("--batch-size: ", randrange(1,64), \

n || ||’ \

"__start-1lr: ", uniform(0.0005, 0.0015), \
" |I ||’ \

"optimizer: ", randrange(l, 4))

# Optimizer correspondency:
# - 1: adam
# - 2: adamW

# - 3: ranger
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